K-homological finiteness of Ruelle algebras

Dimitris Gerontogiannis

Mathematical Institute Leiden University

University of Colorado Boulder Conference on Smale spaces, their groupoids and C*-algebras 13 May 2022

Outline

- Motivation
 - Fredholm modules
 - Finite summability
- Brief introduction on Smale spaces
 - Smale spaces
 - Groupoids and C*-algebras
 - KK-duality of Ruelle algebras
- Finitely summable Fredholm modules over Ruelle algebras
 - Kasparov slant products
 - Groupoid metrics
 - Essentially commuting Lipschitz algebras
 - K-homological finiteness of Ruelle algebras

Fredholm modules

Definition (Atiyah, Kasparov)

An odd Fredholm module over a C*-algebra A is a triple (H, ρ, F) where

- ► H is a separable Hilbert space;
- \triangleright $\rho: A \rightarrow B(H)$ is a representation;

▶ $F \in B(H)$ with $F = F^*, F^2 = 1$ and $[F, \rho(a)] \in K(H)$, for all $a \in A$.

An even Fredholm module is the \mathbb{Z}_2 -graded version.

Fredholm modules

Definition (Atiyah, Kasparov)

An odd Fredholm module over a C*-algebra A is a triple (H, ρ, F) where

- ► H is a separable Hilbert space;
- \triangleright $\rho: A \rightarrow B(H)$ is a representation;

► $F \in B(H)$ with $F = F^*$, $F^2 = 1$ and $[F, \rho(a)] \in K(H)$, for all $a \in A$. An even Fredholm module is the \mathbb{Z}_2 -graded version.

The K-homology class $[H, \rho, F] \in \mathsf{K}^*(A)$ gives a pairing map $\mathsf{K}_*(A) o \mathbb{Z};$

 $[e] \mapsto \operatorname{Index}(\rho_{-}(e)F_{+}\rho_{+}(e)),$ $[u] \mapsto \operatorname{Index}(P\rho(u)P),$

where P = (F + 1)/2 is a projection.

Finite summability

For p > 0 the Schatten *p*-ideal: $L^{p}(H) = \{T \in K(H) : (s_{n}(T))_{n} \in \ell^{p}(\mathbb{N})\}.$ Definition (Connes)

The Fredholm module (H, ρ, F) over A is p-summable if

 $[F, \rho(a)] \in L^p(H)$, for a in a dense *-subalgebra \mathscr{A} .

 \mathscr{A} can be assumed stable under holomorphic functional calculus.

Finite summability

For p > 0 the Schatten *p*-ideal: $L^{p}(H) = \{T \in K(H) : (s_{n}(T))_{n} \in \ell^{p}(\mathbb{N})\}.$ Definition (Connes)

The Fredholm module (H, ρ, F) over A is p-summable if

 $[F, \rho(a)] \in L^{p}(H)$, for a in a dense *-subalgebra \mathscr{A} .

 \mathscr{A} can be assumed stable under holomorphic functional calculus.

Theorem (Connes Index Formula)

Suppose (H, ρ, F) over A is p-summable on \mathscr{A} . Then, by considering K-theory classes over \mathscr{A} the associated pairing map $K_*(A) \to \mathbb{Z}$ becomes

$$[e] \mapsto a_n \operatorname{Tr}_s(\rho(e)([F, \rho(e)])^n), [u] \mapsto b_n \operatorname{Tr}(\rho(u^*)([F, \rho(u)][F, \rho(u^*)])^n[F, \rho(u)]),$$

where $n \in \mathbb{N}$ is even and large enough.

Example

• Represent $A = C(\mathbb{T})$ on $H = L^2(\mathbb{T})$ via ρ as multiplication operators.

- P projects onto the Hardy space span{zⁿ : n ≥ 0} and F = 2P 1.
 (H, ρ, F) is a Fredholm module.
 - $[F, \rho(f)]$ is finite rank for trigonometric polynomials f;
 - ▶ It is *p*-summable (p > 1) as $[F, \rho(f)] \in L^p(H)$ when $f \in C^{\infty}(\mathbb{T})$.

Then, for a unitary $u \in C^{\infty}(\mathbb{T})$ the associated map $\mathsf{K}_1(\mathcal{C}(\mathbb{T})) o \mathbb{Z}$,

$$[u]\mapsto -\frac{1}{2\pi i}\int u^{-1}du,$$

that is, minus the winding number around $0 \in \mathbb{C}$ of u.

Definition (Emerson-Nica, Goffeng-Mesland)

The K-homology of A is uniformly L^p -summable on \mathscr{A} if every $x \in K^*(A)$ has a Fredholm module representative that is p-summable on \mathscr{A} .

Examples

A	A	p >	Author(s)
<i>C</i> (<i>M</i>)	$C^{\infty}(M)$	$\dim(M)$	Kasparov, Folklore
CK-algebra	*-algebra of generators	0	Goffeng-Mesland
$\mathcal{C}(\partial \Gamma) times \Gamma$	$Lip(\partial \Gamma,d)\rtimes_{alg}\Gamma$	$\dim_{H}(\partial \Gamma, d)$	Emerson-Nica

Definition (Emerson-Nica, Goffeng-Mesland)

The K-homology of A is uniformly L^p -summable on \mathscr{A} if every $x \in K^*(A)$ has a Fredholm module representative that is p-summable on \mathscr{A} .

Examples

А	A	${m ho}>$	Author(s)
<i>C</i> (<i>M</i>)	$C^{\infty}(M)$	$\dim(M)$	Kasparov, Folklore
CK-algebra	*-algebra of generators	0	Goffeng-Mesland
$C(\partial \Gamma) \rtimes \Gamma$	$Lip(\partial \Gamma,d)\rtimes_{alg}\Gamma$	$\dim_{H}(\partial \Gamma, d)$	Emerson-Nica

Care is Required

- (Rave) Requiring $\mathscr{A} = A$ leads to degeneracy issues;
- (Puschnigg) For a higher rank lattice Λ, every 0 ≠ x ∈ K*(C^{*}_r(Λ)) is not represented by a finitely summable Fredholm module on CΛ;
- (Goffeng-Mesland) There is 0 ≠ x ∈ K¹(⊕_{n∈ℕ}C(S²ⁿ⁻¹)) that does not admit finitely summable Fredholm module representations.

Smale spaces HTA, slope $\theta = (1 + \sqrt{5})/2$

•
$$\mathbb{T}^2 = \mathbb{R}^2 / \mathbb{Z}^2$$
 with quotient metric via $q : \mathbb{R}^2 \to \mathbb{T}^2$;
• $\varphi : \mathbb{T}^2 \to \mathbb{T}^2$ induced by $A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$ acting on \mathbb{R}^2 ;

• $heta^2 > 1$ is eigenvalue with eigenvector $v_u = (heta, 1)$.

▶
$$\theta^{-2} < 1$$
 is eigenvalue with eigenvector $v_s = (-1, \theta)$.

Definition (Ruelle)

A Smale space is a compact metric space (X, d) with a homeomorphism φ so that

• there is $\varepsilon_X > 0$ and a local bi-continuous (bracket) map

$$egin{aligned} \left[\cdot,\cdot
ight] &: \{(x,y)\in X imes X:d(x,y)\leq arepsilon_X\}
ightarrow X\ & [x,x]=x\ & [x,[y,z]]=[x,z]\ & [[x,y],z]=[x,z]\ & arphi([x,y])=[arphi(x),arphi(y)]; \end{aligned}$$

▶ there is $\lambda > 1$ so that for $\varepsilon \leq \varepsilon_X, x \in X$ and

$$X^{s}(x,\varepsilon) = \{y \in X : d(x,y) < \varepsilon, [x,y] = y\}$$
$$X^{u}(x,\varepsilon) = \{y \in X : d(x,y) < \varepsilon, [x,y] = x\},\$$

 φ and φ^{-1} contract $X^s(x,\varepsilon)$ and $X^u(x,\varepsilon)$ at least by λ^{-1} .

Examples

- Subshifts of finite type. Important subclass:
 - Topological Markov chains
- Smale's nonwandering Axiom A systems. Important subclasses:
 - Anosov diffeomorphisms (e.g Hyperbolic toral automorphisms)
 - Horseshoes from self-affine limit sets
- Certain expansive groups
- Aperiodic substitution tiling spaces
- Fractals from self-similar groups
- Wieler solenoids

Groupoids and C*-algebras (Putnam-Spielberg)

Ruelle, Putnam and Spielberg investigated C^* -algebras from Smale spaces. For $x \in X$ consider

$$X^{s}(x) = \{ y \in X : d(\varphi^{n}(x), \varphi^{n}(y)) \to 0, n \to +\infty \}, X^{u}(x) = \{ y \in X : d(\varphi^{n}(x), \varphi^{n}(y)) \to 0, n \to -\infty \}$$

Let P, Q be periodic orbits. Form equivalence relations on $X^{u}(Q), X^{s}(P)$

$$G^{s}(Q) = \{(x, y) \in X^{u}(Q) \times X^{u}(Q) : y \in X^{s}(x)\},\$$

$$G^{u}(P) = \{(x, y) \in X^{s}(P) \times X^{s}(P) : y \in X^{u}(x)\}.$$

Theorem (Putnam-Spielberg)

The groupoids $G^{s}(Q)$ and $G^{u}(P)$ admit an étale structure given by holonomy maps.

To get C^* -algebras, consider the complex vector space $C_c(G^s(Q))$ with convolution and involution

$$(f \cdot g)(v, w) = \sum_{z \in X^s(v)} f(v, z)g(z, w),$$
$$f^*(v, w) = \overline{f(w, v)}.$$

Then, represent $C_c(G^s(Q))$ on the grid-like $H = \ell^2(X^s(P) \cap X^u(Q))$ and get the stable algebra $\mathcal{S}(Q)$ by completion. The unitary $u\delta_y = \delta_{\varphi(y)}$ gives an inner automorphism α_s and hence the stable Ruelle algebra

$$\mathcal{R}^{s}(\mathcal{Q}) = \mathcal{S}(\mathcal{Q})
times_{lpha_{s}} \mathbb{Z}.$$

Similarly, represent $C_c(G^u(P))$ on H to get the unstable algebra $\mathcal{U}(P)$ and unstable Ruelle algebra

$$\mathcal{R}^{u}(P) = \mathcal{U}(P) \rtimes_{\alpha_{u}} \mathbb{Z}.$$

Examples

- Subshifts of finite type
 - $\mathcal{R}^{s}(Q)$ is a (stabilised) Cuntz-Krieger algebra.
 - S(Q) is the (stabilised) AF-core.
- Dyadic solenoid
 - S(Q) is the (stabilised) Bunce-Deddens algebra of type 2^{∞} .
- Hyperbolic toral automorphism
 - S(Q) is a (stabilised) A_{θ} where θ is an algebraic irrational.

Moreover,

- (Deeley, Goffeng, Spielberg, Strung, Yashinski, Putnam) the stable and unstable algebras are classified up to isomorphism by the Elliott invariant;
- (Putnam-Spielberg, Kirchberg-Phillips) Ruelle algebras are simple, purely infinite and classified up to isomorphism by K-theory.

KK-duality of Ruelle algebras

KK-duality is a noncommutative analogue of Spanier-Whitehead duality. Its definition makes use of KK-theory and the Kasparov product.

Two C*-algebras A and B are KK-dual if there is a fundamental class in $K^*(A \otimes B)$ that pairs through Kasparov product with a class in $K_*(A \otimes B)$, in a way that leads to isomorphisms between the K-theory of A and the K-homology of B, and vice versa.

Theorem (Kaminker-Putnam-Whittaker)

The Ruelle algebras $\mathcal{R}^{s}(Q)$ and $\mathcal{R}^{u}(P)$ are KK-dual. The fundamental class $\Delta \in \mathsf{K}^{1}(\mathcal{R}^{s}(Q) \otimes \mathcal{R}^{u}(P))$ induces the isomorphism

$$-\otimes_{\mathcal{R}^{s}(Q)}\Delta:\mathsf{K}_{*}(\mathcal{R}^{s}(Q))
ightarrow\mathsf{K}^{*+1}(\mathcal{R}^{u}(P)).$$

By flipping we also get an isomorphism $K_*(\mathcal{R}^u(P)) \cong K^{*+1}(\mathcal{R}^s(Q))$.

The fundamental class $\Delta \in \mathsf{K}^1(\mathcal{R}^s(Q) \otimes \mathcal{R}^u(P))$ is represented by an extension $\tau_\Delta : \mathcal{R}^s(Q) \otimes \mathcal{R}^u(P) \to Q(H \otimes \ell^2(\mathbb{Z}))$ built from the representations

$$\rho_s : \mathcal{R}^s(Q) \to B(H \otimes \ell^2(\mathbb{Z}))$$
$$a \mapsto \bigoplus_{n \in \mathbb{Z}} \alpha_s^n(a), \quad u \mapsto 1 \otimes B$$

$$\blacktriangleright \ \rho_u : \mathcal{R}^u(p) \to B(H \otimes \ell^2(\mathbb{Z}))$$

$$b\mapsto b\otimes 1, \quad u\mapsto u\otimes B^*.$$

which commute modulo $K(H \otimes \ell^2(\mathbb{Z}))$.

Note

The class Δ has a θ -summable Fredholm module representative. Joint work with Mike Whittaker and Joachim Zacharias, to be published soon.

Computation of Kasparov slant product $-\otimes_{\mathcal{R}^{s}(q)}\Delta$

Let $0 \neq q \in \mathcal{R}^s(Q)$ be a projection and by computing the map $-\otimes_{\mathcal{R}^s(Q)} \Delta$ we get that

 every class in K⁰(R^u(P)) is represented by an even balanced Fredholm module of the form

$$(H\otimes \ell^2(\mathbb{Z}),\,
ho_u,\,
ho_s(u)+1-
ho_s(q)),\quad u\in q\mathcal{R}^s(Q)q$$
 is a unitary;

 every class in K¹(R^u(P)) is represented by an odd Fredholm module of the form

 $(H\otimes \ell^2(\mathbb{Z}),\,
ho_u,\,2
ho_s(e)-1),\quad 0
eq e\in q\mathcal{R}^s(Q)q$ is a projection.

Recall that $\rho_s(\mathcal{R}^s(Q))$ and $\rho_u(\mathcal{R}^u(P))$ commute modulo $K(H \otimes \ell^2(\mathbb{Z}))$. Hence, refining this relation yields a refinement of the Fredholm modules.

Groupoid metrics

Theorem (G.)

 $G^{s}(Q)$ and $G^{u}(P)$ admit a Lipschitz groupoid structure via special metrics D_{s} and D_{u} associated to a compatible self-similar metric d' on (X, φ) . Also, the groupoid automorphisms from φ are bi-Lipschitz.

Proposition (G.)

The algebraic crossed products

$$\begin{split} \Lambda_s &= \mathsf{Lip}_c(G^s(Q), D_s) \rtimes_{\alpha_s, \mathsf{alg}} \mathbb{Z}, \\ \Lambda_u &= \mathsf{Lip}_c(G^u(P), D_u) \rtimes_{\alpha_u, \mathsf{alg}} \mathbb{Z} \end{split}$$

are well-defined dense *-subalgebras of $\mathcal{R}^{s}(Q)$ and $\mathcal{R}^{u}(P)$.

Essentially commuting Lipschitz algebras

Proposition (G.)

The algebras $\rho_s(\Lambda_s)$ and $\rho_u(\Lambda_u)$ commute module the Schatten *p*-ideal $L^p(H \otimes \ell^2(\mathbb{Z}))$, for all $p \gtrsim \dim_H(X, d')$.

This can be strengthened as follows.

Proposition (G.)

There are stable under holomorphic functional calculus *-subalgebras $H_s \supset \Lambda_s$ and $H_u \supset \Lambda_u$ so that $\rho_s(H_s)$ and $\rho_u(H_u)$ commute module $L^p(H \otimes \ell^2(\mathbb{Z}))$, for all $p \gtrsim \dim_H(X, d')$.

K-homological finiteness of Ruelle algebras

Theorem (G.)

- Let $0 \neq q \in H_s$ be a projection and $p \gtrsim dim_H(X, d')$. Then,
 - every class in K⁰(R^u(P)) is represented by an even balanced Fredholm module of the form

$$(H\otimes \ell^2(\mathbb{Z}),\,
ho_u,\,
ho_s(u)+1-
ho_s(q)),\quad u\in qH_sq$$
 is a unitary,

that is p-summable on H_u .

 every class in K¹(R^u(P)) is represented by an odd Fredholm module of the form

$$(H\otimes \ell^2(\mathbb{Z}),\,
ho_u,\,2
ho_s(e)-1),\quad 0
eq e\in qH_sq$$
 is a projection,

that is p-summable on H_u .

Remarks

- Construct projections and unitaries in the corner subalgebras to get finitely summable Fredholm modules;
- Good knowledge of K-theory would help, e.g the work of Deeley-Yashinski on the K-theory of the stable algebra of a Wieler solenoid;
- Perform index computations;
- ▶ Lift these Fredholm modules to spectral triples.

Thank you!

Some Bibliography

- A. Connes; Noncommutative differential geometry. I, II, Inst. Hautes Études Sci. Publ. Math. 62 (1986), 257-360.
- H. Emerson, B. Nica; K-homological finiteness and hyperbolic groups, J. Reine Angew. Math. 745 (2018), 189-229.
- D. M. Gerontogiannis; Ahlfors regularity and fractal dimension of Smale spaces, Erg. Th. Dyn. Sys. (2021), 1-52.
- D. M. Gerontogiannis; On finitely summable Fredholm modules from Smale spaces, arXiv:2112.02371 (2021), submitted, 1-63.
- M. Goffeng, B. Mesland; Spectral triples and finite summability on Cuntz-Krieger algebras, *Doc. Math.* 20 (2015), 89-170.
- J. Kaminker, I. F. Putnam, M. F. Whittaker; K-theoretic duality for hyperbolic dynamical systems, J. Reine Angew. Math. 730 (2017), 263-299.